
First-year Project: Map of Denmark
Visualization, Navigation, Searching, and Route Planning (Spring 2022)

Course Code: BSFDVNS1KU

Group 27:
Rasmus Nielsen (rasni@itu.dk)

Lucas Alexander Bjerre Fremming (lufr@itu.dk)
Morten Falk Jonasson (mfjo@itu.dk)

Nicklas Lundsteen Jensen (nlje@itu.dk)
Jonas Westh Nielsen (jwni@itu.dk)

Date of hand in: 20. May 2022

1

Content

1 Preface and introduction 4

2 Background and description of problem 4
2.1 Problem area . 4
2.2 Usage requirements for the program 5
2.3 Systemic requirements for the program 5

3 Analysis 5
3.1 Design choices for the programs internal structure 5

3.1.1 Using a Parser . 6
3.1.2 Using Java to create a User Interface 6

3.2 Choice of IDE . 6
3.3 Choice of algorithms . 7

3.3.1 Address storing . 7
3.3.2 Path finding . 7
3.3.3 Storage of spacial data . 8

3.4 Design choices for the User Interface 8
3.4.1 Process of creating the layout 8
3.4.2 Design choices for the features 8

4 User manual 10
4.1 Opening the program . 10
4.2 Debugger menu . 11
4.3 Searching for addresses and routing 13
4.4 User pins . 14
4.5 Error messages . 14

5 Technical description of the program 15
5.1 OSM parser . 15
5.2 Address storing . 16

5.2.1 TrieTree . 16
5.3 KD-Tree . 17

5.3.1 Structure . 17
5.3.2 Range Query . 17
5.3.3 Nearest Neighbor . 18
5.3.4 Limitations ”TODO: Find correct word” 18

5.4 Graph-structure and pathfinding 18

6 Testing, Debugging and Bugs 19
6.1 Debugging . 19
6.2 Testing . 20
6.3 Bugs . 20

2

7 Process description 20
7.1 Form of work . 20

7.1.1 Physical attendance . 20
7.1.2 Virtual attendance . 20

7.2 General issues . 21

8 Product conclusion 21

9 Sources 22

10 Appendices 23

3

1 Preface and introduction

This report has been written in correlation with the First-Year project at the IT
University of Copenhagen under the supervision of the course manager Troels
Bjerre Lund and the TA (Teaching Assistant) Anne Mendelssohn Bartholdy-
Falk.

In this course we have developed an interactive map of Denmark, which allows
the user to move freely on a map and use many of the implemented features.
These features, are among other things, a zoom which allows the user to focus
on certain areas, search a desired address, find optimal pathways between two
locations and so on. This project span across 11 weeks of continuous work with
two progress presentations and a weekly TA update meeting.

2 Background and description of problem

2.1 Problem area

The application to be developed must be a visual representation of a map rem-
iniscent of other map applications such as OpenStreetMap and Google Maps.
One of the requirements must therefore be a runnable application which can ex-
ecute map data retrieved from the previously mentioned OpenStreetMap. The
specific requirements were furthermore described in the project description. It
will primarily be these criteria in which the application will be developed from.
The requirements can mainly be differentiated into two different sections. These
are the usage requirements and the systematic requirements. The usage require-
ments are connected to the user experience and therefore are requirements for
actions the user must be able to perform. Inversely are the systemic require-
ments the actions the application must be able to execute. These requirements
were defined as follows:

4

2.2 Usage requirements for the program

Usage requirements for the program

1 Allow the user to specify a data file for the application.

2 Include a default binary file embedded as a resource of the program.

3 Allow the user to change the visual appearance of the map.

4 Adjust the layout when the size of the window changes

5 Feature a coherent user interface for your map.

6 Allow the user to search for addresses.

7 Allow the user to choose between routes for biking/walking, and cars.

8 Output a textual description of the route found.

9 Allow the user to add something to the map, e.g., points of interest

Table 1: Usage requirements for the program.

2.3 Systemic requirements for the program

Systemic requirements for the program.

1 Draw all roads in the loaded map dataset, using different colors.

2 Show any rectangle of the map, as indicated by the use.r

3 Show the current zoom level.

4 Where appropriate, draw other cartographic elements.

5 Unobtrusively show the name of the road closest to the mouse pointer.

6 Be able to compute the shortest route on the map between two points.

7 Be fast enough for convenient use.

Table 2: Systemic requirements for the program.

3 Analysis

3.1 Design choices for the programs internal structure

To keep the applications internal structure as simple and manageable, we de-
cided to use the Model-View-Controller design structure in our project. That
means the structure is divided and separated as datamodel business logic (Model),
User Interface (View) and Program logic (Controller). This setup makes it eas-
ier to both maintain and expand the code. This also helps keeping the code
with as low coupling and as high cohesion as possible.

5

3.1.1 Using a Parser

We started by using the parser from our hand-in assignments earlier in this
course. This choice was made on the grounds that it would be easier to under-
stand the parser whilst having it, rather than creating a new one. The parser
was changed throughout the project, while still keeping the original structure.
These changes were primarily additions to the loadOSM method. In the method
we had to account for the different tags the OSM-file contained. The tags are
responsible for a lot of the data we are using to create the map, so knowing
all the tags would prove to be useful. This information was provided to us by
OpenStreetMap.org.

3.1.2 Using Java to create a User Interface

The Model-View-Controller structure is applied through the JavaFX library.
The library makes it easy to design a graphical user interface, by using .XML
files to layout the design of an application.
Through our course UX and Web-Programming we have learned how to use
markup-language to design a desirable user-interface. While working on the
design of the application, our group have utilized Scene Builder which is a
visual layout tool for JavaFX applications. This allowed us to quickly demon-
strate different design concepts and solutions when we added new features to the
application. We also chose to implement the library ControlsFX [3] which is an
open source project for JavaFX that aims to provide useful UI controls and other
tools to complement the core JavaFX distribution. This was implemented be-
cause they have a great method for textfields called bindAutoCompletion(...),
which takes the the textfield and a list as parameters and automatically adds a
dropdown menu for auto suggestion when typing characters in the textfield.

3.2 Choice of IDE

We chose, unconventionally, to work in two different Integrated Development
Environments. Those being IntelliJ IDEA and Visual Studio Code. While this
might seem to cause problems, it was actually quite the contrary. The IDEs
first of all were quite similar. Both are made to handle large projects and have
a good implementation of controlling the system ”Git”. There were, however,
a slight difference in, among other things, the way the debugger functioned. At
times throughout development, we would encounter that the IntelliJ debugger
would be more thorough and warn about e.g. possible NullPointerException
where as the Visual Studio Code debugger would not care. This back and forth
between IDEs resulted in a program which was more versatile, and surprisingly
did not cause any issues.

6

3.3 Choice of algorithms

3.3.1 Address storing

At first we made a temporary solution, where we parsed all addresses from the
given OSM file into a dedicated Address class, to be stored in an ArrayList.
Each of these Address classes contains the street name, house number, postcode
and city, as well as the x,y coordinate and id for each address node on the given
map. We could then iterate through this ArrayList with the methods
Address.toString().contains().toLowerCase()
to find every corresponding address to an input string.
However we knew that this was a temporary solution since an ArrayList con-
taining that many classes would take a long time to search through. given it’s
linear runtime. The upside to this solution was that it did not use that much
memory compared to other solutions.
At the midway presentation, we saw that a lot of the other groups used a
TrieTree to store their address data. After researching this type of tree we
decided to use it, as we would rather have quick search and performance rather
than a low memory usage, which the TrieTree fulfills. This would later become
a downside to our program since our TrieTree used too much heap memory,
because the size of a TrieTree ultimately is O(N*C*K), where N is the number
keys, C is the number of Characters in the TrieTrees alphabet, and K is the
key length for the longest key [5].
We briefly discussed using a Binary Search Tree, a Ternary Search Tree

or simply compressing our TrieTree, to reach a better combination of both
performance and memory usage. Although, because of time constraints, we
never got to test another tree structure to compare with our current one.

3.3.2 Path finding

Our path finding algorithm of choice is Dijkstra’s algorithm. The benefits
of Dijkstra is, once the algorithm has been run, you can traverse to every vertex
from the source at little to no cost of extra runtime. Since we know the weight
of an edge in our graph can not be negative, there is no need for our algorithm
to detect negative cycles, like the Bellman-Ford algorithm does. However run-
ning the Dijkstra-algorithm can be time consuming since it traverses in every
direction from our source vertex. This can be combated by upgrading the algo-
rithm to A*, which could improve runtime if the right heuristics can be applied.
Although, due to the time constraints we were not fully capable of applying the
right heuristics, as we would rather have a more functional Dijkstra algorithm,
than a weak A* with bad heuristics.

7

3.3.3 Storage of spacial data

Drawing a map this size is a big task. We started out with an OSM-file with a
small cut-out of Copenhagen. With this small of a sample size, it is sufficient to
run through all drawable content linearly. However, when working with bigger
data sets, this method quickly fails. To store our data-points, we ended up
with a choice between quad-trees and KD-trees. Troels Bjerre Lund went over
these two structures in week 11, with his lecture. Both of the structures have
their own strengths, however we found that a KD-tree would suit our project
the best. A quad-tree splits into 4 equal regions, which can cause less efficiency
since the points in a map are not equally spaced out. KD-trees on the other
hand, can split data into 2 partitions based on some data analysis, which in
our case would be the median node in a set of nodes. This makes it way more
efficient at partitioning uneven distributed nodes, and is the main reason we
chose to use the KD-tree as our data structure.

3.4 Design choices for the User Interface

3.4.1 Process of creating the layout

Before we decided how we wanted our UI to look, we went to big companies
like Google and Apple to gain some inspiration. We noticed that they have
their Canvas to fill the whole application, while the UI components are placed
on top of it and to the sides. We found this to be a significantly good way of
emphasizing the user to have their attention set to the canvas whilst still keeping
the UI components straightforward and to the sides and top, just like Google
and Apple. We started off by having a side-panel with every UI component
that could be featured from what we currently had ready in the back-end. As
the time went on, we kept expanding the side-panel with features and ended up
liking it more than the ”On top of the canvas” components. So we decided to
let the final version have the simple and minimalistic side panel. The downside
is less Screen real estate for the Canvas.

3.4.2 Design choices for the features

We noticed how companies like Google and Apple have their address searches
in either the top corner or bottom corner. So from the beginning, we decided
to have our address features in the top left corner, as that would be the most
common feature for the user. For the simplicity of the design, we chose to have
a switch button that determined whether the user were looking for a specific
address or looking to create a route between two addresses. When the switch is
turned off, only a single text-field is shown. If it is turned on, a new text-field,
including transportation, travel time, and a travel distance. A direction list is
then shown to make sure the user would not get confused in the process.
At the bottom of our side-panel we have our Debugger Menu. This includes
4 check-boxes: FPS Counter, KD-tree Visuals, Nearest Neighbour Visuals and
Dark-Theme mode. Following up we have the graphical interpretation offer

8

https://learnit.itu.dk/user/view.php?id=12533&course=3021362

the zoom values together with a zoom in- and zoom out button. These two
features were added after loads of debugging hours trying to fix the very unstable
onScroll method for zoom - especially on touch pad. These were later fixed for
a more stable approach when zooming on a touch pad, but we saw no reason to
remove the buttons anyway. The zoom visual increments with 10% per zoom
scroll. At first we used the getDeltaY() method from the scroll event on the
canvas. This was a smart move, to make the scroll more smooth and consistent
across different display resolutions. The reason we chose to set a fixed value
at 50 was to make sure the touch pad scroll and mouse wheel scroll would be
more consistent between the two scroll types. Additionally we implemented a
Thread.sleep() method, so there was more control over the touch pad scrolls,
which would tick a lot faster than the mouse wheel. The downside for the
Thread.sleep() method is the less responsive feeling it may give to the user
as it creates a small delay between the scroll inputs.
When opening the program, the user is welcomed by a start page. The start
page is very simple containing two buttons. The first button Load Bornholm

opens a map of Bornholm as we weren’t able to load the entire map of Denmark.
The other button is a file-loader, so that the user is free to load another OSM-
file if that would wish to. Pressing one of the buttons will trigger the splash
page, which is a responsive loading page. This would ideally give the user a
feeling that something is indeed loading in the background. At the start of our
project, loading the program would make it ”Not responding” until it was done
loading the map. This could interpreted as something was off, even though it
was just loading. This was done using different threads so the splash GUI, with
the responsive progress bar, would not get affected by the program loading the
whole map and ”Not responding”.

9

4 User manual

4.1 Opening the program

When first opening the program the user will be greeted by a splash screen
asking whether to load the default map, Bornholm, or load a custom OSM-file.
After choosing one of the two maps, a loading screen will open, and when done
loading the intended map is displayed on the screen.
At the top of the map we have two drop down buttons, one is the File button,
to load a new map from a custom OSM-file, and the other an Info button, that
when pressed shows an About,- and a Hotkeys button. The About button will
show a popup with the names of the creators of the map, along with a link to
our GitHub repository.
The Hotkeys button will open another popup, which shows the different hotkey
combinations that can be used on the map, either to create a route or a point
of interest.

Figure 1: MapIT Startpage

Figure 2: MapIT Splashpage

10

4.2 Debugger menu

On the left hand side of the map is where our Debugger Menu is presented.
Here we display the zoom level, along with a plus and minus icon for zooming
in and out which can be done with the mouse wheel as well. On top of this is
the nearest street field, which at all times shows the closest street to the current
mouse position on the map.
Above this we have our four debug settings in forms of buttons the user can
switch on or off. Firstly we have a FPS counter which displays the current
FPS of the map. This number is only recalculated when the map is repainted,
which means it only updates when the map is being moved. Therefore it is not
always precise, since you have to move the map around a bit before it displays
the correct FPS-count.
To the left of this we have the KDTree debug function. When toggled two
squares are displayed on the map. A smaller black square along with a bigger
red square. The black represents the screen size, that meaning what the user can
see. And the red square is the buffer, meaning the extra space being rendered
for a more smooth experience when dragging the map.
The third button is the NNDebug, short for Nearest Neighbour debug. When
toggled, every left click on the map will highlight the closest street to the mouse
in a red color. This is to show the user how our routing works, since it uses this
feature to choose start and end points.
Lastly we have our Dark Theme mode. This will make the entire map and
sidebar dark themed, thus making it easier on the eyes in lower lighting.

Figure 3: MapIT KDTree Debug

11

Figure 4: MapIT DarkTheme Mode

12

4.3 Searching for addresses and routing

When wanting to use our routing function, there are two ways to do it. The first
way is to only search for one address. This is done via. the search bar at the
top left, which will auto suggest every possible address with your current text
input. After the user have chosen a full address from the drop down, the user
can press the Search button and a red circle will indicate the chosen address on
the map.
The second way is to toggle the switch under the search button. This will make
a second search bar appear, as well as three buttons to choose your preferred
transportation mode. When two different addresses have been entered, the user
can choose their desired way of transport and hit Route. This will show a red
circle for starting point, and a pink circle for end destination on the map, along
with a yellow line to show the route. At the current moment in time, every
transportation method will display the same route. We made a Total distance
and Total time counter as well as a textual route guide. These are however not
working at the moment and will just show a fixed distance, time and guide.
Another way to get a route between to points are by holding left control along
with left,- and right clicking your mouse. This will, for left click, add a starting
point, and right click, add an end destination. When doing this it is not needed
to choose a transportation mode, and the search bars will not update with the
new addresses.

Figure 5: MapIT Address Search

13

4.4 User pins

An additional feature for our map is user pins. These work by holding left shift
and left clicking a point on the map. This will create a blue circle along with
a text popup which informs you at which address you have added a personal
point of interest. For deletion of a POI the user can hold left shift and left
click on a blue circle, this will remove the POI, and a popup will show with a
message of deletion.

Figure 6: MapIT POI

4.5 Error messages

Our program uses popups as error messages. If the user have not entered an
address and still hit the search or route button, a popup will appear with the
message ”Please enter an address”, or ”Please fill in both fields”. When trying
to search for a route without choosing a transportation mode you will get a
”Please select your preferred transportation” error.

Figure 7: MapIT Error Messages

14

When trying to make a route between two addresses on the same street you
will get a ”Cannot make route on the same street” error, and searching with
an invalid input will create a ”No address found” error, a ”Neither start nor
end address found”, a ”No start address found” or a ”No end address found”,
depending on whether the route switch is toggled or not.

5 Technical description of the program

5.1 OSM parser

Our Model class is responsible for the entirety of the parsing process, and is the
foundation of our application. Firstly it recognizes whether the loaded file is a
OSM or ZIP file, and then creates a FileInputStream from the file. This input
stream is then sent to our loadOSM method which creates a XMLStreamReader
from the input stream.
Next we iterate over every line in the file using a While loop, and a Switch case
is then in charge of determining whether the read line is a OSMNode, OSMWay,

tag etc.
The Tag case is in charge of the details of the program, and therefore is by far
the longest. Here we use a nested Switch case to determine what the tags
value is. It is in this case we assign all the WayType enums, get all address info
for our address storing, as well as, get all highways in the map.
Lastly we have another Switch case for END ELEMENTS in the file. This
creates all the highways, along with all the multipolygons we use to draw forests
and lakes.
After the while loop ends we have two System.out.println statements that prints
the time the parsing took, along with the time the filling of the KDTrees took.
This is purely to our own benefit to see if changes within the code improves the
loading time.
The last third of our Model class consist of smaller methods we use to create
everything from the TrieTree, KDTrees and Graph, to get info like the minlon
or maxLat.
Ultimately, we would have liked to have split this Model class up into two classes,
a dedicated parsing class, and a class for all the other methods and variables
we create in the Model class. We never got to implement this change however,
since it got down prioritized to other, more important aspects of the project.

15

5.2 Address storing

When we figured out how to parse the address in from an OSM-file, we made
a dedicated Address class for each address found. This was the easiest and
quickest way to bind an address to an OSMNode, which gave us the exact x,y
coordinates for each address, which we knew we would eventually have to use
for our path creation.
Initially we stored every address in an ArrayList of Address classes, but knew
we had to use a quicker data structure for searching through these as the list
grew in size. We choose to use a TrieTree for this.

5.2.1 TrieTree

A TrieTree is a type of search-tree used to locate specific keys. It works by
splitting every key up into characters which is then assigned to a node deter-
mined by the ASCII value of the character. Each node then has a pointer to the
next character in the string. for an example of the structure refer to appendix
8. In order to then retrieve a key from the tree, a Depth first search is imple-
mented. We made a few additions to the traditional TrieTree, by assigning a
x,y coordinate to each key. As well as implementing a auto complete function
using a recursive depth first algorithm.
The reason we chose a TrieTree is because it is one of the quickest data structure
for inserting and searching through strings, since the worst case running time
for a TrieTree insertion and search is: O(n)[5] where n is the length of the
input key. Our TrieTree worked by inserting every complete address we had
into it. This did later give us some memory issues, since the depth of the tree
ultimately is the longest keys length. And since we used a complete address
(Streetname + housenumber + postnumber + city) this key could potentially
be incredibly long. Furthermore since we used numbers and whitespaces our
TrieTree alphabet also were 37 characters instead of 26.
As mentioned the downside to using a TrieTree is that is uses a lot of memory.
And we later ran into memory issues when loading bigger maps, such as a
complete map of Denmark which gave us a memory exception:
java.lang.OutOfMemoryError: Java heap space. We realised that the way our
TrieTree alphabet worked, as well as how we stored each address in it, were
really poorly optimized and used way more memory than needed. This were
because of, the way we chose to store each address, as a complete string with
both, streetname, number, postnumber and city, which then resulted in very big
keys. And because of this we had to increase the alphabet to both the English
alphabet plus numbers and white spaces. This resulted in an alphabet size of
37 which resulted in the tree size being alphabetSize ∗ keyLength ∗N , [5], N
being the number of keys in the tree.
We briefly looked at how to compress our TrieTree so that each node could
hold more characters instead of a single one: refer to appendix 8 And therefore
minimizing the TrieTree size along with memory usage. To save even more
memory we could have changed the input keys we used, and decreased the

16

alphabet size to make the tree as small as possible. We also realised that the
dedicated address class is obsolete since it is only used as a middle ground before
we parse into the TrieTree, when we could have parsed directly the addresses
directly into the TrieTree. However because of time constraints we never got
to implement any of these optimizations.

5.3 KD-Tree

K-Dimensional trees, otherwise know as kd-trees are data structures used for
space-partitioning data. The data structure behave much like a binary tree,
with each of its node representing a point in the multidimensional space. The
main uses for kd-tree are nearest neighbor searching range queries, which we
have been using our trees for in the project.

5.3.1 Structure

Like stated above, a kd-tree is similar to binary trees, which results in a structure
with bigger nodes on the right side, and smaller on the left. In our project there
was only a need for partitioning 2 dimensions: X, Y. What makes kd-trees
different from binary-trees is that for every layer in the kd-tree, we compare a
different dimension. In our case, with 2 dimensions it goes like: For depth 0, we
compare the x value, then in the next layer, depth 1, we compare the y-values.
tree.
”A kd-tree for a set of n-points uses O(n) storage and and can be constructed
in O(n log n).”[1]
An example of a 2-dimensional kd-tree can be found at appendix 10.

5.3.2 Range Query

To figure out which parts of the map we should be drawing for the user, we
made use of range queries in our kd-trees. The query starts by looking at the
root node of the tree, checks if the node is inside the given range, and adds
it to the list of it is. Afterwards it checks whether the ’less’ side of the range
is less than our current nodes value: if we are comparing x values we check of
the left side of the range is less than the current nodes x-value, and if the right
side is more than our current node’s x-value. The Same thing happens when
comparing y-values, just for the top and bottom of the range. If any of these
are true, we will call the same function on the appropriate child and continue
our search. All of this results in an ArrayList of things to draw, and we can run
through that linearly to draw them. ”A rectangular range query on the kd-tree
takes O(n + k) time, where k is the number of reported points.” [1]

17

5.3.3 Nearest Neighbor

Nearest Neighbor was used to find the closest road to a given point. This
algorithm was used to find the closet road to the mouse, as well the closest road
to an address. Like the range query, this algorithm starts with the root of the
tree. Checks the distance to the target and stores it. It then looks to see if
the target is less or greater than the node’s x or y, based on the current layer
of tree. If the target is less than, we check the left child, and vice versa if the
target is greater. Every time we check a new node, we test if the distance to
the target is smaller than the previously recorded shortest dist, and change it if
that is the case.
As well as checking the closer branch, we need to determine whether a closer
point could be in the farther branch. To do that we check if the distance between
the target and the partition is less than our current shortest dist.
Nearest Neighbor Search ”has been shown to run in O(log n) average time per
search in a reasonable model. (Assuming d a constant)[2]
For a visual representation of nearest neighbor search, refer to appendix 11.

5.3.4 Limitations ”TODO: Find correct word”

Line are not points, and that brings with it some complications in terms of filling
a kd-tree. The solution we went with to fix this issue was to get the average x,
and y of all the nodes making up a line. This average coordinate would be the
representative for the drawable. This however, brought its own complication.
Since a drawable is defined from its center, a part of it could be in the range
query and not be drawn, since the center could be outside. To combat this, we
implemented a buffer around the users screen. This bigger range would make
sure that the amount of cases where this problem occurred would be minimized.

5.4 Graph-structure and pathfinding

The graph structure for the application is only applied to the highway-tag that
is parsed from our data file. We chose to not include tags path, track and

cycleway in our structure, because it gave us unexpected results from our
Dijkstra-algorithm(can be seen on figure 9). The algorithm would sometimes
choose a cycle-way, track, or path because it turned out to be a shorter path
than just staying on the highway. Preferably we would have three graphs, one
for pedestrians, one for bicycles and one for cars. We have not included it for
pedestrians and bicycles because of time constraints.
When parsing information in the Model class and loadOSM method, we are
checking different OSM tags through a switch case. When we get to the tag
highway, we are setting the isHighway boolean to true (can be seen on figure
12), so we know later in the switch case to parse the information further into
an arraylist of highways. Furthermore we collect data from tags maxspeed and

name to create a new OSMWay object if isHighway is true.
Once we have parsed all information concerning highways into the highways

arraylist, the createGraph() method is used. The method uses a foreach-loop

18

to run through all OSMWays in highways and runs through each OSMWay’s list
of OSMNodes. We are creating an Edge object with the appropriate information
such as id’s for vertices from, to, from2, to2 and weight, distance for
each node in a OSMWay through a for-loop. Currently the weight is the same as
distance, because of an unexpected result, when debugging on a map of Fyn.
Each Edge is then added to an arraylist of edges; edgeList.
When creating an object of the EdgeWeightedDigraph class, you need to specify
the amount of vertices in the graph. We chose to create an index id2 that keeps
track of every OSM-node, because the graph should not contain more vertices
than there are OSM-nodes. Even though all nodes are not used for highways,
this was an easy way of solving the problem. Once the foreach-loop is done, we
are adding all edges in edgeList to our graph.
The classes Edge, EdgeWeightedDigraph and Dijkstra were initially from
the textbook:
Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne[4],
and eventually fitted to meet our demands. To traverse the graph we are us-
ing the Dijkstra class, which uses a source vertices and a graph. Initially we
intended to use the A* algorithm, but due to limited time we prioritized on
functionality firsthand. This is why the Dijkstra constructor also takes a second
integer. This was intended to be the target vertex in the graph, and our plan
was to use the target for heuristics in the relax(Edge e, int t) method. A
path is eventually created when the method drawablePath(int v) is called.
The method simply traverses the path to the given vertex v, and adds all nodes
in the path to an arraylist. The arraylist of nodes is used to create a PolyLine

object that is returned by our method, and displayed in MapCanvas. The total
runtime for the Dijkstra algorithm is O(ElogV)[4] where E is the number of
edges in our graph and V is the number of vertices. Since we created our graph,
intentionally, with a higher amount of vertices than needed it would be desirable
to look into how to create the graph with the right amount of vertices.

6 Testing, Debugging and Bugs

6.1 Debugging

Throughout the entirety of our coding process, we implemented a lot of debug-
ging. This was entirely done by System.out.println statements within our code,
to debug whether or not a chosen method were working as intended, or a chosen
variable were being instantiated properly.
We used these for the bigger algorithms, the kdtree, trieTree and the dijkstra-
algorithm. But also if we ran into unexpected exceptions. Overall this com-
bination of reactive debugging, along with preemptive debugging helped out a
lot. And we could quickly find and fix the issues within the code by using these
System.out.println statements.

19

6.2 Testing

We never implemented the desired testing we wanted to, because of time con-
straints. Although, when looking back, we could have saved our self some time
by implementing JUNIT testing, which would have made it easier and quicker
to test the implemented methods, instead of using
System.out.println statements.

6.3 Bugs

Bugs
1 The TrieTree does not reset if a new map is loaded.
2 Draw fills might not be placed at the correct coordinate.
3 Holding shift while zooming only zooms out.

And does not affect the zoom value.
4 Typo in the Hotkeys menu regarding deleting a POI.
5 Loading bigger maps is not possible because of memory usage.
6 When routing you get the route to a road and not a precise address.
7 Not possible to load in a map containing characters not in the

TrieTrees alphabet.

Table 3: Known bugs in the application.

7 Process description

7.1 Form of work

7.1.1 Physical attendance

One of the first things we agreed upon in our group contract, was that we would
physically meet at least once a week at ITU. This was typically on Wednesdays.
We would meet at 10 am, and work until we were happy with the progress made.
There were several aspects to a physical meetup, which were very pleasant.
These were, among other things, that it was easy to get feedback from one
another and show screens to get input on issues. Another big plus were the
social aspects. We would grab lunch together and talk. There were, however,
some downsides to this. Every group member preferred to work from our PC
at home rather than a laptop. We would combat this by also having days were
we would meet online.

7.1.2 Virtual attendance

Virtual days were typically on Fridays. Here we would use the communication
software ”Discord”. This gave us the opportunity to communicate and share
files with one another. We were able to emulate ”looking at each other screens”
feature by using the ”Share Your Screen”, thus having similar work flow to

20

physical meetings. This made the group very effective, since we were able to be
on our personal computer. We were all adjusted to working from home, duo to
the previous years of Covid-19 lockdown. We were therefore also aware of the
issues this could cause, such as lack of motivation and how easy it was not to be
productive. We would face this issue by having a concrete plan and hand out
work responsibility.

7.2 General issues

None of the group members were used to a project of this scale, let alone with
this group size. This lead to an overwhelming start of the project, where the
group was not as productive as intended. By the time of the second progress
presentation, we realised that we were beginning to fall behind. This lead to
the last few weeks of the project being very stressful and filled with tasks that
needed to be done. Another issue we ran into, was that within a larger group, it
was easy to lose track of what members have been working on and what needed
to be done.

8 Product conclusion

Through our analysis we aspired to fulfill all the expected requirements. Whilst
working on the project we realized that compromises were inevitable and we
had to prioritize certain things above others. Things such as fastest path with
Dijkstra, a different type of search tree, or more efficient storage of data, are
certainly things that we wanted to look more into. Nevertheless we ended up
with an application that is capable of loading somewhat bigger maps, in which
you can search for addresses and find shortest paths efficiently. We could have
saved a lot of time if we implemented testing instead of debugging every time we
ran into issues. Overall our time management could have been better structured,
as we experienced stagnation in our progress.
Through all this we can conclude that our group has made an application that
is capable of drawing a map using OSM-data.

21

9 Sources

References

[1] Hermant M. Kakde, 2005, Range Searching using Kd Tree.
[online] Available at:
http://www.cs.utah.edu/~lifeifei/cis5930/kdtree.pdf

[Last visited 17/05-2022]

[2] Thinh, Nguyen, Oregon State University, Lecture 13+: Nearest Neighbor
Search
[online] Available at:
http://andrewd.ces.clemson.edu/courses/cpsc805/references/

nearest_search.pdf

[Last visited 17/05-2022]

[3] ControlsFX is a library of UI controls and useful API
[online] Available at:
https://controlsfx.github.io/

[Last visited 19/05-2022]

[4] Robert Sedgewick and Kevin Wayne, 2018 Algorithms, 4th Edition
[online] Available at:
https://algs4.cs.princeton.edu/44sp/

[Last visited 19/05-2022]

[5] geeksforgeeks, 2022 Trie, Insert and Search
[online] Available at:
https://www.geeksforgeeks.org/trie-insert-and-search/

[Last visited 19/05-2022]

22

http://www.cs.utah.edu/~lifeifei/cis5930/kdtree.pdf
http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf
http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf
https://controlsfx.github.io/
https://algs4.cs.princeton.edu/44sp/
https://www.geeksforgeeks.org/trie-insert-and-search/

10 Appendices

Figure 8: Example of a TrieTree and a compressed TrieTree

Figure 9: Bug for shortest path

23

Figure 10: Example of a 2 dimensional kd-tree

Figure 11: Example of nearest-neighbor search, and showing the
importance of checking the other child of a node

24

Figure 12: Parsing through highway tag

Week 9 2022-Mar-09

25

Group formation and talk about how to work on the project throughout the
course. Group contract was made and social channels established for easy com-
munication concerning the project.

Week 11 2022-Mar-16

This week we started the coding process and got a working XML parser to read
OSM files from our earlier handins.

We also setup a map canvas with some paint methods which are not working
at the current moment in time.

Changelog:

• Made a working XML parser, which can read OSM files and save nodes
etc.

• Setup a canvas with paint methods which does not work atm.

Working on:

• Getting lines painted on canvas - coloring.

Week 12 2022-Mar-23

This week we worked a lot on the basis for the application. We added a lot
more tags to the parser and some light color coding for some of the tags like
motorways and highways. We also fixed our draw methods in map canvas and
made it so the draw method is depending on the amount the user is zoomed in.

Changelog:

• Added draw behaviour depending on the zoomedIn variable

• Replaced if statements with a switch case for parsing tags.

• Added more tags to the parser.

• Added color coding for motorways.

• Added more specific types of tags.

Known issues:

• A lot of lines defined as unknown.

• FPS problems, because of rendering.

• Water fill is not precise.

26

Working on:

• Fix the known issues.

• Setup kd-tree.

• Basic UI.

• Debug functions.

Week 13 2022-Mar-30

This week we started working on the KD-tree as we feel the route drawing is
dependent on this. Furthermore we added a dedicated address class to all the
addresses as well as adding the needed tags in the parser to fill this class. We
expanded the Enum class to fit more types with the most important new tag
being coastlines. We also started working on some visual debug functions and
the template for the graph, as well as fixing the last of the issues we have with
our drawing functions.

Changelog:

• Added address class.

• Added address parser so each address will get its own class.

• Added a List of all address classes.

• Added coastline.

• Added more enums.

Working on:

• KDTree.

• Javafx debug mode.

• Edge weighted graph.

• Fix water coloring.

Week 14 2022-Apr-06

We finished working on the KDTree, along with the classes it uses. We also got
our first debug function running, the FPS counter as well as some basic GUI. We
are still working on the KDTree, the rest of the visual debug functions, the draw
functions which are not working, and the graph. We also started working on a

27

slider to the zoom function as we are experiencing some issues with zooming on
the trackpad of a laptop.

Changelog:

• Made somewhat functional KDTree:

– Added KDTree class.

– Added OSMNodeParser class

– Added OSMNodeSorter class

• Added first version of GUI with few components

• Added FPS counter to Debugger menu

Working on:

• Finish KDTree.

• Fill out the rest of Javafx debug mode.

• Edge weighted graph.

• Fix water coloring.

• Make slider function for zoom.

Week 16 2022-Apr-20

Most importantly our KDTree now fills correctly and is working. To go with
this we started working on a query or boundary box to make use of the KDTree.
We transitioned the work from the graph to now work on both the graph and
the Dijkstra algorithm simultaneously.

Changelog:

• Fixed kdtree (working and fills correctly)

• Added an attempt on query (boundarybox) (not working)

Working on:

• Query.

• Dijkstra.

28

Week 18 2022-May-04

The query function for the KDTree is now working as well. We merged our
KDTree branch with our UI branch to combine the UI changes and the tree.
For example to make a debug function for it to display the boundary box on
screen. We dismissed the idea of a slider for zoom levels and instead made a
progressbar for it. We also started working on a TrieTree for the address storing,
and a function to be able to load a custom OSM file and .OBJ files. We are still
working on the graph and dijkstra. Along with the faulty draw functions we
still are experiencing. We also need to convert the KDTree to take ways instead
of nodes.

Changelog:

• Finished KD-tree query function

• Merged KD-Tree branch and Niller’s branch to combine some UI-changes
and the tree

• Added progressbar for zoom-value

Working on:

• Adress-Trie

• Load Custom OSM-files aswell as object files

• Edge weighted graph.

• Fix water coloring.

• Convert KD-tree from OSM-Nodes to OSM-Ways

Week 19 - Part One 2022-May-12

Probably the biggest progress in a week so far. We implemented a working
TrieTree for our addresses, it works great but soaks a lot of memory which
we are having some issues with on bigger maps. We also finally merged our
coastlines and fixed the last issues with the drawing functions to draw waters
and forests correctly. The graph and dijkstra got finished as well, and can now
create a shortest path. The KDTree is now finalized and we implemented a
nearest neighbor search as well. UI wise we made popups with both success
messages and error messages. We are working on the final smaller tweaks now,
like a few changes to drawing, what to draw and some fixes to nearest neighbor
search.

Changelog:

29

• Implemented Adress Trie

• Merged coastlines

• Fixed water coloring

• Implemented Edge weighted graph

• Implemented Dijkstra

• Implemented Nearest Neighbor to find name of closest street

• Finalized the KD-tree class

• Tweaked some things for drawing

• Cleaned up the project with accessors and mutators

• Added pop-ups as error handling for invalid user-inputs

Working on:

• Load Custom OSM-files aswell as object files

• Tweaks in drawing (zoom level required and some more tags for cleanli-
ness)

• Finish the reset method to restore default camera settings

• More accurate Nearest Neighbor (look for every node in way instead of
average coords)

• What to draw on the map is still hugely in development:

– We need to figure out in what detail we want to draw the map in.

Week 19 - Part Two 2022-Mar-13

Final release logbog. In the couple of days since the last logbog we made our
final refinements to our application. We made a function for the user to input
personal points of interests. Refined our dijkstra and connected it to work with
the address search, as well as mouse clicks. In the UI we added a loading page,
and a dark theme for the map. Lastly we fixed the last drawing issues we had,
with harbor filling, and the zoom values. This is the final release.

Changelog:

• Points of Interests added

• Djikstra refined

30

• Routing based on address input

• Routing based on mouse clicks

• Added points for end- and start-points for route

• Splashpage when loading

• Added Dark Theme

• Load custom OSM

• Tweaked zoomvalues for drawing

• Info and hotkey pages added in ”info”

• Fixed harbors filling out

• Zoom has been fixed

• Nearest streetname to mouse is shown constantly

Known issues:

• Closest street is defined off of avg x, y for the street, resulting in inaccuracy

• Some streets are not connected to the roadmap since it includes car-only
roads

• Too much memory usage, resulting in a cap on how big a loaded OSM-file
can be.

• Trie does not accept non Danish-characters, resulting in failure when open-
ing maps for other countries

• When creating a route from 2 addresses, the end point is pink.

31

	Preface and introduction
	Background and description of problem
	Problem area
	Usage requirements for the program
	Systemic requirements for the program

	Analysis
	Design choices for the programs internal structure
	Using a Parser
	Using Java to create a User Interface

	Choice of IDE
	Choice of algorithms
	Address storing
	Path finding
	Storage of spacial data

	Design choices for the User Interface
	Process of creating the layout
	Design choices for the features

	User manual
	Opening the program
	Debugger menu
	Searching for addresses and routing
	User pins
	Error messages

	Technical description of the program
	OSM parser
	Address storing
	TrieTree

	KD-Tree
	Structure
	Range Query
	Nearest Neighbor
	Limitations "TODO: Find correct word"

	Graph-structure and pathfinding

	Testing, Debugging and Bugs
	Debugging
	Testing
	Bugs

	Process description
	Form of work
	Physical attendance
	Virtual attendance

	General issues

	Product conclusion
	Sources
	Appendices

